Web Render TOP

From TouchDesigner 099 Wiki

Summary

The Web Render TOP renders a webpage via a separate browser process that uses Chromium Embedded Frameworks and passes the result back through shared memory.

Note: The Web Render TOP is only available on Windows OS in TouchDesigner Educational, TouchDesigner Commercial and TouchDesigner Pro.

Attach an Info CHOP to get the loaded status loaded of the page, and num_handle_updates, the number of times the page has been rendered.

Attach an Info DAT to get the shared memory handle, the status of the browser process, the process_id, versions for Chromium Embedded Frameworks cef and Chromium chromium, the url currently displayed, page title and error state of the process.

PythonIcon.png webrenderTOP_Class

Parameters - Web Page

Active /active - Enables/disables the Web Render TOP.

URL url - Uniform Resource Locator or the address of the web page

Only Update When Loaded Updatewhenloaded - Only shows the web page when it is full loaded.

Transparent Background transparent - Loads the webpage with a transparent background. This option will restart the browser process.

Enable Audio audio - Let the browser process play audio if the web page contains audio. This option will restart the browser process.

Maximumn Render Frame Rate maxrenderrate - Sets the maximum frame rate the page will be rendered at.

Options options - Additional options that can be passed to the browser process. This option will restart the browser process.

Restart if Process Died autorestart - Automatically restart the browser process if it died.

Reset Update Count resetcount - Reset the counter for the number of times the webpage has been updated (available via an Info CHOP).

Reload Current Page reload - Reloads the current page, the same as refreshing a web browser.

Parameters - Common Page

Output Resolution - quickly change the resolution of the TOP's data.

  • Use Input - uses the input's resolution.
  • Eighth, Quarter, Half, 2X, 4X, 8X - multiply the input's resolution by that amount.
  • Fit Resolution - Resizes the input to the size specified in Resolution using the best possible match that does not crop any of the input. It will resize the image to be larger than the input resolution if a larger resolution is specified. It's a "fit inside", Aspect Ratio is maintained.
  • Limit Resolution - Limits the input to the size specified in Resolution using the best possible match that does not crop any of the input. It will NOT resize the image to be larger than the input resolution if a larger resolution is specified. It's a "fit inside", Aspect Ratio is maintained.
  • Custom Resolution - enables the Resolution parameter below, giving direct control over width and height.

Resolution - enabled only when the Resolution parameter is set to Custom Resolution. Some Generators like Constant and Ramp do not use inputs and only use this field to determine their size. The drop down menu on the right provides some commonly used resolutions.

Use Global Res Multiplier - Uses the Global Resolution Multiplier found in Edit>Preferences>TOPs. This multiplies all the TOPs resolutions by the set amount. This is handy when working on computers with different hardware specifications. If a project is designed on a desktop workstation with lots of graphics memory, a user on a laptop with only 64MB VRAM can set the Global Resolution Multiplier to a value of half or quarter so it runs at an acceptable speed. By checking this checkbox on, this TOP is affected by the global multiplier.

Output Aspect - sets the image aspect ratio allowing any textures to be viewed in any size. Watch for unexpected results when compositing TOPs with different aspect ratios. (You can define images with non-square pixels using xres, yres, aspectx, aspecty where xres/yres != aspectx/aspecty.)

  • Input - uses the input's aspect ratio.
  • Resolution - uses the aspect of the image's defined resolution (ie 512x256 would be 2:1), whereby each pixel is square.
  • Custom Aspect - lets you explicitly define a custom aspect ratio in the Aspect parameter below.

Aspect - Use when Output Aspect parameter is set to Custom Aspect.

Input Smoothness - This controls pixel filtering on the input image of the TOP.

  • Nearest Pixel - uses nearest pixel or accurate image representation. Images will look jaggy when viewing at any zoom level other than Native Resolution.
  • Interpolate Pixels - uses linear filtering between pixels. This is how you get TOP images in viewers to look good at various zoom levels, especially useful when using any Fill Viewer setting other than Native Resolution.
  • Mipmap Pixels - uses mipmap filtering when scaling images. This can be used to reduce artifacts and sparkling in moving/scaling images that have lots of detail.

Fill Viewer - determine how the TOP image is displayed in the viewer.

  • Input - uses the same Fill Viewer settings as it's input.
  • Fill - stretches the image to fit the edges of the viewer.
  • Fit Horizontal - stretches image to fit viewer horizontally.
  • Fit Vertical - stretches image to fit viewer vertically.
  • Fit Best - stretches or squashes image so no part of image is cropped.
  • Fit Outside - stretches or squashes image so image fills viewer while constraining it's proportions. This often leads to part of image getting cropped by viewer.
  • Native Resolution - displays the native resolution of the image in the viewer.

NOTE: To get an understanding of how TOPs works with images, you will want to set this to Native Resolution as you lay down TOPs when starting out. This will let you see what is actually happening without any automatic viewer resizing.

Viewer Smoothness - This controls pixel filtering in the viewers.

  • Nearest Pixel - uses nearest pixel or accurate image representation. Images will look jaggy when viewing at any zoom level other than Native Resolution.
  • Interpolate Pixels - uses linear filtering between pixels. Use this to get TOP images in viewers to look good at various zoom levels, especially useful when using any Fill Viewer setting other than Native Resolution.
  • Mipmap Pixels - uses mipmap filtering when scaling images. This can be used to reduce artifacts and sparkling in moving/scaling images that have lots of detail. When the input is 32-bit float format, only nearest filtering will be used (regardless of what is selected).

Passes - duplicates the operation of the TOP the specified number of times.

Channel Mask - Allows you to choose which channels (R, G, B, or A) the TOP will operate on. All channels are selected by default.

Pixel Format - format used to store data for each channel in the image (ie. R, G, B, and A). Refer to Pixel Formats for more information.

  • Input - uses the input's pixel format.
  • 8-bit fixed (RGBA) - uses 8-bit integer values for each channel.
  • sRGB 8-bit fixed (RGBA) - uses 8-bit integer values for each channel and stores color in sRGB colorspace.
  • 16-bit float (RGBA) - uses 16-bits per color channel, 64-bits per pixel.
  • 32-bit float (RGBA) - uses 32-bits per color channel, 128-bits per pixels.


  • 10-bit RGB, 2-bit Alpha, fixed (RGBA) - uses 10-bits per color channel and 2-bits for alpha, 32-bits total per pixel.
  • 16-bit fixed (RGBA) - uses 16-bits per color channel, 64-bits total per pixel.
  • 11-bit float (RGB), Positive Values Only - A RGB floating point format that has 11 bits for the Red and Green channels, and 10-bits for the Blue Channel, 32-bits total per pixel (therefore the same memory usage as 8-bit RGBA). The Alpha channel in this format will always be 1. Values can go above one, but can't be negative. ie. the range is [0, infinite).
  • 8-bit fixed (Mono) - Single channel, where RGB will all have the same value, and Alpha will be 1.0. 8-bits per pixel.
  • 16-bit fixed (Mono) - Single channel, where RGB will all have the same value, and Alpha will be 1.0. 16-bits per pixel.
  • 16-bit float (Mono) - Single channel, where RGB will all have the same value, and Alpha will be 1.0. 16-bits per pixel.
  • 32-bit float (Mono) - Single channel, where RGB will all have the same value, and Alpha will be 1.0. 32-bits per pixel.
  • 8-bit fixed (RG) - A 2 channel format, R and G have values, while B is 0 always and Alpha is 1.0. 8-bits per channel, 16-bits total per pixel.
  • 16-bit fixed (RG) - A 2 channel format, R and G have values, while B is 0 always and Alpha is 1.0. 16-bits per channel, 32-bits total per pixel.
  • 16-bit float (RG) - A 2 channel format, R and G have values, while B is 0 always and Alpha is 1.0. 16-bits per channel, 32-bits total per pixel.
  • 32-bit float (RG) - A 2 channel format, R and G have values, while B is 0 always and Alpha is 1.0. 32-bits per channel, 64-bits total per pixel.
  • 8-bit fixed (A) - An Alpha only format that has 8-bits per channel, 8-bits per pixel.
  • 16-bit fixed (A) - An Alpha only format that has 16-bits per channel, 16-bits per pixel.
  • 16-bit float (A) - An Alpha only format that has 16-bits per channel, 16-bits per pixel.
  • 32-bit float (A) - An Alpha only format that has 32-bits per channel, 32-bits per pixel.
  • 8-bit fixed (Mono+Alpha) - A 2 channel format, one value for RGB and one value for Alpha. 8-bits per channel, 16-bits per pixel.
  • 16-bit fixed (Mono+Alpha) - A 2 channel format, one value for RGB and one value for Alpha. 16-bits per channel, 32-bits per pixel.
  • 16-bit float (Mono+Alpha) - A 2 channel format, one value for RGB and one value for Alpha. 16-bits per channel, 32-bits per pixel.
  • 32-bit float (Mono+Alpha) - A 2 channel format, one value for RGB and one value for Alpha. 32-bits per channel, 64-bits per pixel.